Measures of Association

- A single number that summarizes the strength of the relationship between two variables.

- It suggests the ability of one variable (the independent variable) to predict another (the dependent variable). It also, sometimes, shows the direction of the relationship (either positive or negative).

Measures of Association

“All good measures of association use a proportionate reduction in error (PRE) approach”.

What is a PRE measure?

PRE measures compare:

1. the amount of error that is made when trying to predict a variable and there is no information to help to:

2. the amount of error that is made when trying to predict a variable and there is some information to help, i.e., an independent variable.

For Example:

Take your best guess?

If you know nothing else about a person except that he or she lives in the United States and I asked you to guess his or her race/ethnicity, what would you guess?

The most common race/ethnicity for U.S. residents.

The mode!

Now, if we know that this person lives in San Diego, California (i.e., we have additional information to help, that is, the independent variable: city of residence), would you change your guess?

Since about 70% of the population in San Diego is Hispanic, you would predict each person is Hispanic and then be correct 70% of the time.
Summary

PRE measures are derived by comparing:
1. the number of errors made when predicting the dependent variable (DV) while ignoring all independent variables (IV) to:
2. the number of errors made when predicting the DV while using information about an IV.

Proportional Reduction of Error (PRE)

\[PRE = \frac{E1 - E2}{E1} \]

- \(E1 \) = errors of prediction made when the independent prediction variable is ignored
- \(E2 \) = errors of prediction made when the IV is used to make the predictions

Proportional Reduction of Error (PRE)

- If the DV is related to the IV, then the IV will allow us to make a better prediction (fewer errors) than the prediction we would make without considering the IV.
- The better the ability of the IV to help us predict the DV, the “stronger” the relationship between the DV and the IV.

Two PRE Measures: Lambda & Gamma

- **Lambda** \(\lambda \) is an asymmetrical measure of association.
 - A measure whose value may vary depending on which variable is considered the independent variable and which the dependent variable.
- **Gamma** \(\gamma \)
 - Appropriate for...
 - Ordinal & Dichotomous Nominal variables
 - Suitable for use with nominal variables
 - Ranges from 0.0 to 1.0
 - A lower value represents a weaker association, while a higher value is indicative of a stronger association between the DV & IV

Measure of Association: Lambda \(\lambda \)

- Provides us with an indication of the strength of an association between the independent and dependent variables.
- Suitable for use with nominal variables
- Ranges from 0.0 to 1.0
The size of the Lambda is generally interpreted as follows:

- 0.00 to 0.19: little to no relationship
- 0.20 to 0.39: weak relationship
- 0.40 to 0.59: moderate relationship
- 0.60 to 1.00: strong relationship

Gamma provides us with an indication of the strength and direction of the association between the variables (ranges from 0.0 to ±1.0).

Gamma is a symmetrical measure of association. (A measure whose value will be the same when either variable is considered the independent variable or the dependent variable).

The size of the Gamma is generally interpreted as follows:

- 0.00 to 0.19: little to no relationship
- 0.20 to 0.39: weak relationship
- 0.40 to 0.59: moderate relationship
- 0.60 to 1.00: strong relationship

Four other measures include:

- **Yule’s Q**: a PRE symmetric measure used with a 2 x 2 table; gives misleading information when one of the four cells has a zero frequency
- **Phi**: a PRE symmetric measure used with a 2 x 2 table; doesn’t reach a maximum or minimum 1 so a “phi adjusted” has been developed

Measure of Association: Gamma

- Gamma provides us with an indication of the strength and direction of the association between the variables (ranges from 0.0 to ±1.0).

- Appropriate for ordinal variables or with dichotomous nominal variables (dichotomous variables have only two values such as female/male).

Four other measures include:

- **Tau C**: a non-PRE symmetric measure used with two discrete ordered variables; due to how it calculates the size of an association it is always a smaller value than gamma (neither statistic is preferred to the other)
- **Somers’ D**: a PRE asymmetric measure for discrete ordered variables; due to how it calculates the size of an association it is always a smaller value than gamma, because it is asymmetric the DV should always be specified when reporting the statistic